

PART – B

- 5 a. Using Newton-Raphson method find the real root of the equation $3x = \cos x + 1$ (07 Marks)
 - b. Solve the following system of equations using Gauss-Jordon method

EC, ML, EE

$$x + y + z = 9$$

 $2x - 3y + 4z = 13$
 $3x + 4y + 5z = 40$

7

8

(07 Marks)

c. Find the largest eigen value and the corresponding eigen vector of the following matrix by using power method

 $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ Take $(1, 0, 0)^{T}$ as initial eigen vector. Carry out four iterations. (06 Marks)

6 a. A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t sec. Find the velocity and its acceleration when t = 0.3 sec.

	New York, N							
	t	0	0.1	0.2	0.3	0.4	0.5	
	x	30.13	31.62	32.87	33.64	33.95	33.81	
		1211 - 111					((07 Mark
	Given the values	of x and y						
	x :	1.2	2.1	2.8	4.1	4.9	6.2	
	у:	4.2	6.8	9.8	13.4	15.5	19.6	
	Find the value of	x correspo	nding to y -	12 using La	agrange's te	echnique.	(()7 Mark
	$\int_{c}^{6} dx$				23			5
8	Evaluate \int_{1+x^2}	using W	eddle's rule	taking 7 orc	linates.		(()6 Mark
	0^{1+X}							
	P' 14	1 64 6		2 10]1		0 1 /1		
8	Find the extrema	I of the fund	ctional J[(y	$)^{-}$ + 12xy d	x with $y(0)$	=0 and y(1) = 1. (0)7 Mark
	Find the sum on	and the second	0 tab the nein					1
	rind the curve h	assing throu	ign the poir	its $(x_1 y_1)$ a	nd $(x_2 y_2)$ v	which when	rotated a	about th
	x-axis gives a mi	nikium sun	ace area.				(0	17 Mark
	Show that the ge	odesics on a	a plane are s	traight lines			(0	6 Mark
ž	Find the Z-transf	orm of the f	following:					
	i) $(n+1)$)2						
	ii) 5m (3	n + 5)					(0	97 Mark
	Find the inverse	7 transform	$z^3 - z^3 $	20z			10	
•	Tind the inverse.	L-11411510111	$\frac{101}{(z-2)^3}$	(z - 4)			(0	1/ Mark
	Solve the differen	nce equation	$v_{-1} + 6$	$v_{m1} + 9v_{m} =$	2 ⁿ			
	with $v_0 = v_1 = 0$	ising Z-tran	sforms	Jn+1 ' /Jn			(0	6 Marl
		ising 2 trui	GENERALDI				(0	U III AI N

* * * * *

Third Semester B.E. Degree Examination, June-July 2009 Analog Electronic Circuits

Time: 3 hrs.

C

Max. Marks:100

Note:1. Answer any FIVE full questions, selecting at least Two questions from each part. 2. Make suitable assumptions if necessary.

PART - A

- 1 a. With respect to a semiconductor diode, explain the following:
 - i) Reverse Recovery time
 - ii) Diffusion capacitance.

(06 Marks)

b. How does a clamping circuit differ from a clipping circuit? For the diode clipping circuit shown in Fig.1(b), draw the input and output waveforms for i) R = 100 Ω; ii) R = 1kΩ;
 iii) R = 10kΩ for V_i = 20 Sinwt and V_R = 10V. Assume Rf = 100Ω, Fr = ∞ and V_r = 0.

(08 Marks)

Draw the circuit diagram of a full wave rectifier with capacitor filter. The circuit uses a capacitor of 1000 μ F and provides a d.c. load current of 500 mA at 2% ripple. Assume f = 50Hz. Calculate i) D.C. output voltage, ii) Peak rectified voltage and % regulation.

(06 Marks)

- What is meant by transistor biasing? Compare different biasing methods used for transistor biasing with respect to stability. (05 Marks)
 - b. Find the operating point for the voltage divider bias circuit with $\beta = 80$ and $V_{BE} = 0.6V$. Find the new operating point when β changes to 100 and V_{BE} changes to 0.25. Given $V_{cc} = 15V$, $R_1 = 100k\Omega$, $R_2 = 18k\Omega$, $R_c = 4.7k\Omega$, $R_E = 1k\Omega$. (07 Marks)
 - c. With the help of a neat circuit diagram, explain the use of transistor as an inverter. (08 Marks)
- 3 a. What are the advantages of using hybrid model to represent the transistor? Explain how hparameters can be obtained from the static characteristics of the transistor. (06 Marks)
 - b. For the Emitter follower circuit, derive expressions for A_V, A_I, R_{in} and R_o of an emitter follower. (08 Marks)
 - c. Compare the characteristics of CE, CC, CB configurations. A CE amplifier uses $R_L = 200\Omega$. The h-parameters are $h_{ie} = 1100\Omega$, $h_{re} = 2.5 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 22 \mu A/V$. Calculate i) Current gain; ii) Input impedance (06 Marks)
- 4 a. What is Miller effect? Draw the high frequency transistor a.c. equivalent circuit (π-Model) and explain the significance of each component in the model. (08 Marks)
 - b. What are the factors that influence the low frequency and high frequency response of a CE BJT amplifier? (06 Marks)
 - c. Calculate the overall lower 3dB and upper 3dB frequencies for a 3 stage amplifier having an individual lower 3dB frequency of 30 Hz and upper 3dB frequency of 2.5 MHz. (06 Marks)

06ES32

06ES32

- 5 a. Why do we cascade amplifiers? State the various methods of cascading transistor amplifiers. A given amplifier arrangement has the following voltage gains. Av₁ = 10. Av₂ = 20 and Av₃ = 40. What is the overall voltage gain? Also express each gain in dB and determine the total voltage gain in dB.
 - b. Explain the operation and characteristics of cascade and Darlington pair connections.

- c. Explain the concept of feedback amplifier. If an amplifier has a bandwidth of 200 kHz and a voltage gain of 80, what will be the new bandwidth and gain if a negative feedback of 5% is introduced? (08 Marks)
- 6 a. How are power amplifier classified? Explain. Show that the transformer coupled class A amplifier has a maximum efficiency of 50%. (08 Marks)
 - b. With circuit diagram, explain the working of class B push pull amplifier. Obtain an expression for the maximum conversion efficiency. (07 Marks)
 - c. What is harmonic distortion? A transistor supplies 0.85 Watts to a 4kΩ load. The zero signal d.c. collector current is 31 mA and the d.c. collector current with signal is 34 mA. Determine the percentage second harmonic distortion. (05 Marks)
- 7 a. State Barkhausen criteria for sustained oscillations and apply this to R.C phase shift oscillator and explain. Write the expression for the frequency of oscillation. Design the R.C. elements of a weinbridge oscillator for operation at $f_0 = 10$ kHz. (08 Marks)
 - b. With the help of a circuit diagram, explain the working of Hartely oscillator. A colpitt's oscillator is to generate a frequency of 800 kHz. The capacitors to be used to have capacitance $C_1 = 100 \text{ }_{P}F$ and $C_2 = 10 \text{ }_{P}F$. Lind the value of inductance. (06 Marks)
 - c. What is frequency stability in oscillators. What factors affect the frequency stability? Explain how crystal oscillator provides good frequency stability. (06 Marks)
 - a. What is a JFET and how does it differ from BJT? Explain the different methods of biasing FET. (07 Marks)

8

- b. Explain the operation of JFET amplifier. Draw the FET small signal model. Calculate the transconductance g_{th} of a JFET having values of $I_{DSS} = 12$ mA and $V_p = -4V$ at bias points i) $V_{GS} = oV$; ii) $V_{GS} = -1.5V$. (06 Marks)
- c. Draw a diagram showing the constructional features of a MOSFET. From the diagram explain in brief how the voltage at the gate controls the flow of carriers. A depletion MOSFET has $I_{DSS} = 12$ mA and $V_P = -4.5$ V. Calculate the drain current at gate source voltages of 1, OV; ii) -2V; iii) -3V. (07 Marks)

* * * * *

⁽⁰⁴ Marks)

06ES33

(10 Marks)

Third Semester B.E. Degree Examination, June-July 2009 Logic Design

Time: 3 hrs.

2

3

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART – A

1 a. Express the P. O. S. equations in a Maxterms list (decimal notations) form. (04 Marks) i) $T = f(a, b, c) = (a + \overline{b} + c)(\overline{a} + \overline{b} + c)$

- ii) $J = f(A,B,C,D) = (A + \overline{B} + C + D)(A + \overline{B} + C + \overline{D})(\overline{A} + B + C + D)(\overline{A} + \overline{B} + C + D)(\overline{A} + B + \overline{C} + D)(\overline{A} + \overline{B} + \overline{C} + D)(\overline{A} + \overline{B} + \overline{C} + D)(\overline{A} + \overline{B} + C + D)(\overline{A} + D + D)(\overline{A} +$
- b. Reduce the following function using K-map technique and implement using gates. (10 Marks)
 - i) $f(P, Q, R, S) = \Sigma m (0, 1, 4, 8, 9, 10) + d(2, 11)$
 - ii) $f(A, B, C, D) = \pi M (0, 2, 4, 10, 11, 14, 15)$
- c. Design a logic circuit with inputs P, Q, R so that output S is high whenever P is zero or whenever Q = R = 1. (06 Marks)
 a. Using Quine Mccluskey Method and simply the following function.
- f (a, b, c, d) = Σ m (0, 1, 2, 3, 8, 9) b. Write the Map entered variable K-map for the Boolean function.
 - $f(w, x, y, z) = \Sigma m (2, 9, 10, 11, 13, 14, 15)$ (10 Marks)
- a. Implement following multiple output function using 74L 3138 and extend gates.
- $F_{1}(A, B, C) = \Sigma m (1, 4, 5, 7)$ $F_{2}(A, B, C) = \pi M (2, 3, 6, 7)$ (06 Marks)
 (08 Marks)
 (08 Marks)
 (08 Marks)
 (06 Marks)
 (06 Marks)
 (06 Marks)
 (06 Marks)
 (06 Marks)
 (07 Marks)
 (07 Marks)
 (08 Marks)
 (08 Marks)
 (08 Marks)
 (09 Marks)
 (09
 - b. Implement the following Boolean function using 8 : 1 multiplexer. $F(A, B, C, D) = \overline{ABD} + ACD + \overline{B}CD + \overline{ACD}$ (08 Marks)

<u>PART – B</u>

3	a.	i) Synchronous and asynchronous circuite				
		ii) Combinational and sequential circuits	(06 Marks)			
	b.	Explain the operation of clocked SR flip-flop.	(08 Marks)			
	с.	What is race around condition? Discuss in detail.				
6	a.	Draw the logic diagrams for (i) SR latch (ii) Master – slave JK flip-flop (iii) M	aster-slave			
	h	Explain the working of 4-bit asynchronous counter	(06 Marks)			
	<i>c</i> .	Explain the working of 4-on asynchronous counter.	(00 Marks)			
	C.	Explain Johnson counter with its circuit diagram and timing diagram.	(08 Marks)			
7	a.	 Explain with suitable logic and timing diagram. i) Serial-in serial-out shift register. ii) Parallel-in parallel-out shift register 	(10 Marks)			
	b.	Explain the Meoly model and Moore model for clocked synchronous sequential no	etwork. (10 Marks)			
8	a.	Compare Moore and Meelay models.	(04 Marks)			
	b.	Design a synchronous counter using JK flip-flops to count in the	sequence			
		0,1,2,4,5,6,0,1,2, Use state diagram and state table.	(12 Marks)			
	C.	State the rules for state assignments.	(04 Marks)			

USN

06ES34

Third Semester B.E. Degree Examination, June-July 2009 **Network Analysis**

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full question, selecting atleast two question from each part. Part A

Three impedances are connected in star. Obtain expressions for their delta connected 1 a. equivalent. Also find the star equivalent of the following circuit shown in figure Q1 (b).

- b. Reduce the network shown in figure Q1 (c) to a single voltage source in series with a resistance using source shift and source transformation (06 Marks)
- Solve for $i_{\theta}(t)$ using mesh analysis in the network shown in figure Q1 (c). (05 Marks) C.

a. Define the following terms as applied to network topology with suitable examples, 2 i) tree and co-tree. ii) Planar and non-planar graphs. (04 Marks)

- The reduced incidence matrix of a graph is given below. Draw the oriented graph b. corresponding to the same. (03 Marks)
 - 0 0 -1 -1 1 0 0 0 -1 1

3

C.

- c. For the network shown in figure Q2 (c), write the tie-set schedule selecting center star as tree and find all branch currents by solving equilibrium equation. (09 Marks)
- d. Define the term duality as applied to networks. Give suitable example. (04 Marks)
- a. State and explain reciprocity theorem.
- b. Find the current through load impedance $Z_1 = 15 \angle -30\Omega$ using Millmans theorem in the circuit shown in figure Q3 (b). (06 Marks)

(08 Marks)

(06 Marks)

06ES34

- 4 State and prove Thevenins theorem. Show that Thevenins equivalent circuit is the dual of Nortons equivalent circuit. (10 Marks)
 - b. Find the value of R_L for which power transferred to the load is maximum and maximum power. Also establish the condition for maximum power transfer. (10 Marks)

Part B

- Explain the following terms with respect to series resonant circuit i) Selectivity and Band 5 a width ii) Q-factor. (05 Marks)
 - b. In a series resonant circuit, show that resonant frequency is equal to the geometric mean of half power frequencies. (07 Marks)
 - For the parallel resonant circuit shown in figure Q5 (c), find Io, IL, Ic, fo and dynamic C. resistance. (08 Marks)
- a. Explain the transient behaviour of the resistance, inductance and capacitance. Also explain 6 the procedure for evaluating transient behaviour. (08 Marks)
 - b. For the circuit shown in figure Q6 (b), the switch 'K' is changed from position 1 to position 2 at t = 0, steady state condition having been reached in position 1. Find the values of i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at t = 0.

(07 Marks)

In the network shown in figure Q6 (c), the switch 'K' is opened at t = 0 after the network has C. attained steady state the switch is closed. Find i_1 , i_2 at t = 0 +(05 Marks)

State and prove tritial and final value theorem with suitable examples. 7 a.

(08 Marks)

(08 Marks)

(04 Marks)

(08 Marks)

c. A voltage pulse of 10 V magnitude is applied to RC network shown in figure Q7 (c). Find the current i(t) of $R = 10 \Omega$ and $C = 0.05 \mu F$ for the circuit. (06 Marks)

- 8 a. Express h – parameters in terms of z-parameters and establish the same.
 - Explain symmetry and reciprocity property of two port networks.
 - Find the z-parameters of the network shown in figure Q8 (c). C. 12-2 12

II 12 I2 2.2 2 R Fig. Q8 (c) 2 of 2

06IT35

Third Semester B.E. Degree Examination, June-July 2009 Electronic Instrumentation

Time: 3 hrs.

Max. Marks:100

Note: 1.Answer any FIVE full questions, selecting at least TWO questions from each part. 2.Missing data to be assumed suitably.

PART – A

1	a. b.	Write a note on Gross and Systematic errors. How these errors can be controlled? (06 Marks) Component manufacturer constructs certain resistances to be between 1.33K and 1.47K What tolerance should be stated? If the resistance values are specified at 25% calculate		
		what tolerance should be stated? If the resistance values are specified at 25°C	, calculate	
	c.	Explain the working of AC voltmeter using Full wave bridge rectifier.	(06 Marks) (08 Marks)	
2	a.	 A 4¹/₂ digit DVM has an accuracy of ± 0.5% of reading ± 1 digit. i) What is the possible error, in volts when the instrument is reading 5V on 200¹/₁ ii) What is the possible error, in volts when the instrument is reading 0.1V on 10¹/₁ 	V range. 2V range?	
			(10 Marks)	
	b.	With the help of block diagram explain the working of Dual slope DVM.	(10 Marks)	
3	a.	Explain the working of dual trace CRO.	(10 Marks)	
	b.	Compare alternate sweep with chopped-sweep.	(04 Marks)	
	C.	Write a note on following controls available on CRO nanel	(01.111.13)	
	0.	i) Time-base ii) X – shift ii) Y – shift	(06 Marks)	
4	a.	Explain the operation of Delayed time-base system.	(10 Marks)	
	b.	Sketch a diagram to show the construction of a variable persistence storage CRT.	Explain its	
		operation.	(10 Marks)	
		$\underline{PART} - \underline{B}$		
5	a.	Draw the block diagram of function generator and explain the working of each blo	ck.	
			(10 Marks)	
	b.	Explain the working of frequency – synthesizer.	(10 Marks)	
6	a.	Derive an expression for deflection current (Ig) of an unbalanced Wheatstone's brid	dge.	
	L		(10 Marks)	
	D.	A capacitance comparison bridge is used to measure a capacitive impedance at a	frequency	
		of 2 kHz. The bridge constant at balance are C3=100 μ F, R ₁ = 20 k Ω , R ₂	$= 50 \text{ k}\Omega,$	
		$R_3=100k\Omega$. Find the equivalent series circuit of the unknown impedance. Show	the bridge	
		diagram.		
			(10 Marks)	
7	a.	What is the difference between active and passive transducers?	(04 Marks)	
	b.	Explain how to use a bonded resistance wire strain gauge.	(06 Marks)	
	с.	Show the construction of LVDT. Explain its operation and list any three advantage	es.	
		I and the minutes	(10 Marks)	
0		Describe the operation of whote electric transformer		
0	d. h	Name any four display devices	(08 Marks)	
	0.	What is a signal conditioner? Driefly which is the second state in the	(04 Marks)	
	C.	what is a signal conditioner? Briefly explain the operation of DC signal co	onditioning	
		system.	(08 Marks)	
		The Tell Tell Tell Tell Tell Tell Tell T		

USN

06ES36

(06 Marks)

Third Semester B.E. Degree Examination, June-July 2009 **Field Theory**

6

Time: 3 hrs.

K

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least Two full questions from each part.

PART - A

- a. State and prove Divergence theorem. (06 Marks) 1 b. Define: i) Electric field intensity; ii) Electric flux density; iii) Volume charge density.
 - c. Let $\vec{\mathbf{p}} = 5r^2 \hat{\mathbf{a}}r \text{ mc/m}^2$ for $r \le 0.08m$ and $\vec{D} = \frac{.205}{2} \hat{a}r \ \mu c/m^2$ for $r \ge 0.08m$. Find ρ_v for i) r = 0.06m; ii) r = 0.1m. (08 Marks)
- a. Derive the expression for the energy stored in Electrostatic field having electric field 2 (06 Marks) intensity E.
 - b. A 15-nc point charge is at the origin in free space. Calculate V1 if point P is located at (2, -3, -1). Also calculate V₁ at P if V = 0 at (6, 5, 4). (08 Marks)
 - c. Derive point form of continuity equation.
- a. Derive Laplace's equations. 3
 - Using Laplace equations, derive the expression for the capacitance of a co-oxial cable. b. (10 Marks)
 - Calculate the numerical values for V and ρ_v in free space of $V = \frac{4yz}{x^2 + 1}$ at p: (1, 2, 3). C.

(05 Marks)

(06 Marks)

(10 Marks)

(06 Marks)

(05 Marks)

- Derive the expression for field at a point P due to an infinitely long filament carrying direct 4 a. (08 Marks) current I.
 - (08 Marks) b. Explain scaler and vector Magnetic Potential.
 - Calculate the value of vector current density in cylindrical co-ordinates at P: (1.5, 90°, 0.5) if $\overrightarrow{H} = \frac{2}{-}\cos 0.2\phi ap$. (04 Marks)

PART - B

5	a.	Define: 1) Magnetization; (1) Permeability; (11) Torque.	(00 Marks)			
	b.	Obtain the boundary conditions at interface between two magnetic materials.	(06 Marks)			
	c.	c. Find Magnetization in magnetic material, where: (08 M				
		i) $\mu = 1.8 \ge 10^{-5}$ H/m and H = 120 A/m; ii) $\mu_r = 22$, there are 8.3 $\ge 10^{28}$ a	toms/m ³ and			
		each atoms has a dipole moment of 4.5 x 10^{-27} A – m ² ; iii) B = 300 μ T and	$1 X_m = 15.$			
6	a.	List Maxwell's equations in point form and integral form.	(08 Marks)			
	b.	Let $\mu = 10^{-5}$ H/m, $\epsilon = 4 \times 10^{-9}$ F/m, $\sigma = 0$ and $\rho_v = 0$. Find K so that each of	he following			
		pair of fields satisfies Maxwell's equation.				
		$ \overrightarrow{1} \stackrel{\rightarrow}{\mathbf{D}} = \left(\begin{array}{ccc} 6 & \widehat{\mathbf{a}}_{x} - 2\mathbf{y} & \widehat{\mathbf{a}}_{y} + 2\mathbf{z} & \widehat{\mathbf{a}}_{z} & \mathbf{nc/m} \end{array} \right), \overrightarrow{\mathbf{H}} = \left(\begin{array}{ccc} \mathbf{kx} & \widehat{\mathbf{a}}_{x} + 10\mathbf{y} & \widehat{\mathbf{a}}_{y} - 25\mathbf{z} & \widehat{\mathbf{a}}_{z} \end{array} \right) \mathbf{A/m}. $				

- $\vec{H} = (y + 2x10^{-6} t) \hat{a}_z A/m$ (06 Marks) ii) $\vec{E} = (20y - kt)\hat{a}x v/m$,
- c. Write a note on Retarded Potential.

7

- a. State and prove Poynting's theorem.
- b. Discuss the behaviour of good conductor when uniform ϕ line wove propagates through it. (10 Marks)
- (08 Marks) a. Discuss the problem of wave reflections from multiple interfaces. 8 (04 Marks)
 - ii) Standing wave Ratios. b. Define: i) Reflection coefficient;
 - c. Consider a 50 MHz uniform plane wave having Electric field amplitude 10 v/m. The medium is loss less having $\epsilon_r = \epsilon_{rl} = 9.0$ and $\mu r = 1.0$. The wave propagates in xy plane at 30° angle to x axis and is linearly polarized along z. Write the phasor expression for the (08 Marks) electric field.